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ABSTRACT 3496' 
To achieve a safe and effective design for liquid-propellant rocket 

engines that are to be regeneratively cooled, knowledge of the heat- 
transfer characteristics of the propellant that is to be used as the coolant 
is essential. For many propellants, such as ammonia, the upper limit 
of nucleate boiling must be considered as the practical limit of the 
cooling capability of a propellant for rocket-engine application. At 
higher heat fluxes lies the film-boiling region, which requires excessive 
surf ace temperatures to accommodate the characteristically low heat- 
transfer coefficients. The heat-transfer characteristics of commercial- 
grade anhydrous ammonia have been obtained experimentally by 
utilizing electrically heated tubes. A total of fifty-five tests were per- 
formed, including measurements in the forced-convection nonboiling 
and forced-convection nucleate-boiling regions. The upper limit of 
nucleate boiling 9ul has been determined for ranges of velocity, pres- 
sure, and liquid bulk temperature that include velocities between 0 and 
156 ft/sec, pressures between 150 and 1820 psia, and liquid bulk tem- 
peratures between 23 and 158°F. The values of 9ur varied from 2 to 
14 Btu/in.* sec, depending upon the particular flow condition. An inter- 
polation equation is presented that may be used to predict qUl within 
the ranges of pressure, velocity, and liquid bulk temperature tested. 

1. INTRODUCTION 

One of the problems facing the liquid-propellant rocket- 
engine design engineer is the cooling of combustion- 
chamber and nozzle walls. If conventional nonrefractory 
metals, such as stainless steel or aluminum, are used for 
thrust-chamber liners, cooling by radiation to the sur- 
roundings is inadequate for most engine operating con- 
ditions. Regenerative cooling, which utilizes one of the 

propellants as a coolant prior to injection, is the most 
feasible means of maintaining wall temperatures SIB- 
ciently low to retain adequate strength of liner materials. 
The heat fluxes encountered in rocket engines are gen- 
erally so high that impractically high c d a n t  velocities 
are required to prevent transition to nucleate boiling 
(sometimes called local or surface boiling). In the sub- 
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cooled nucleate-boiling region the liquid coolant is below 
the saturation temperature and the heat flux is so high 
that bubbles grow and collapse on the heated surface as 
the fluid flows along the passage. If, for a particular con- 
dition, the coolant bulk temperature, pressure, and veloc- 
ity are fixed but the local heat flux is increased, the 
population density of the bubbles increases. At a suffi- 
ciently high local heat flux, the bubbles will coalesce to 
form a vapor film, which induces a high resistance to heat 
flow through the film thickness; as a result, a large increase 
in the surface temperature results. This condition is 
termed film boiling. For many liquid propellants (includ- 

ing ammonia), the wall temperature becomes SO high in 
the film-boiling region that stainless steel melts. Conse- 
quently, the heat flux at the upper limit of nucleate boil- 
ing may be considered as the limiting capability of a 
liquid propellant to cool a local surface area on a rocket- 
engine component. Therefore, a knowledge of the heat- 
transfer characteristics at the upper limit of nucleate 
boiling for the propellant to be used as a regenerative 
coolant is essential to achieve a safe and effective rocket- 
engine design (Ref. 1). Experimental measurements have 
been made to determine these heat-transfer characteristics 
of commercial anhydrous ammonia. 

II. FORCED-CONVECTION NUCLEATE-BOILING TEST APPARATUS 

A schematic diagram of the flow circuit used for the 
tests is shown in Fig. 1. High-pressure nitrogen gas was 
used to force the ammonia from the storage tank through 
the flow system and into the receiver tank. The flow rate 

was measured and controlled by the use of a cavitating 
venturi and regulated nitrogen gas pressure in the SUP- 

ply tank. The desired ammonia bulk temperature at the 
test-section inlet was obtained either by means of an 

TEST SECTION 
ENT 

PROPELLANT- 
SUPPLY 

PREHEAT ER 

HEATING COIL 

a FILTER @ PRESSURE GAGE a SOLENOID VALVE A CHECK VALVE 

THERMOCOUPLE WELL @ HAND-OPERATED VALVE HAND-REGULATING VALVE BLOWOUT DISC - THERMOCOUPLE PNEUMATIC VALVE 8 GROVE REGULATOR 

Figure 1. Flow circuit 
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electrically heated preheater tube or, when cooling was 
necessary, by precooling the supply tank containing the 
ammonia. 

Two sizes of Type 347 stainless-steel circular tube test 
sections were used, having dimensions in inches of 0.25 
outside diameter, 0.009 wall thickness, and 3.15 length 
and 0.188 outside diameter, 0.015 wall thickness, and 3.15 
length, respectively. An unheated length of tube approxi- 

mately 5.8 in. long preceded the heated portion of the 
test section. The ammonia flowed through the inside of 
the vertically mounted tubes, and the heat applied to the 
test section was generated electrically within the tube 
walls with power supplied by dc welding generators. A 
more detailed description of the test apparatus and power 
supply, including tube-wall thickness and electrical resis- 
tance measurement techniques, heat losses and accuracies 
of measurements, is given in Ref. 2. 

111. INSTRUMENTATION 

Temperature measurements of the outside surface of 
the test-section tube walls, installed as shown in Fig. 2, 
were made near the inlet and outlet ends. Liquid bulk- 
temperature measurements were made at the inlet to and 

outlet from the test section. All temperature measure- 
ments were obtained with resistance-welded chromel- 
a lumel  thermocouples.  Tube-wall  t empera ture  
thermocouples were made of O.OO5-in.-diameter wires, 

THERMOCOUPLE 

INSULATION (OUTER LAYER)- 
APPROX. 00007- in . -THICK MICA 
-ONE LAYER 

TEST SECTION 
1/4 O D X O O  
STAINLESS-S 

INSULATION ( INNER LAYER) 
0.0007-in.- THICK MICA 
-ONE LAYER 

PRESSURE TAP 

END FLANGE 
(COPPER NTYP) 

TAINER 

TEST SECTION 
1/4 OD X 0.0 
STAINLESS-S 

I SCALE 2/1 

Figure 2. Test-section and wall-thermocouple installation 
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and liquid bulk-temperature thermocouples, which were 
fused into the end of a glass tube (Fig. 3), were made of 
0.010-in.-diameter wires. 

Pressures were measured upstream and downstream of 
the cavitating venturi so that weight flow rates could be 

established. A pressure measurement was also made near 
the outlet of the test section. 

Additional information on the details of thermocouple 
installation and measurement accuracies may be found 
in Ref. 2. 

Figure 3. Buik-temperature thermocouple 

IV. POOL-BOILING APPARATUS 

The tests at zcro velocity were performed in ;I pool- 
boiling apparatiis using a T Y ~ W  347 stainlcss-steel strip 
0.0043 in. thick, 0.125 in. wide, and 1 in. long, oriented as 
shown in Fig. 4. The apparatus was essentially a pres- 
sure vessel, with an oiitside jacket enclosing passsages 

which could !)e used for either cooling or heating the 
internal liquid. Elcctrodes through the cover and into the 
container supplied power to the test strip. A thermo- 
couple :llso extended through the cover into the liquid 
SO t]~;lt liq11id bulk temperature could be measured. 

4 



I 
JPL TECHNICAL REPORT NO. 32-125 

r 

HEATING AND 
COOLANT FLOW c 

I X  I / B X 0 . 0 0 4 3  

7 in. THICK 

VIEW A-A SHOWING GLASS ENCASED 
CHROMEL-ALUMEL THERMOCOUPLE 

ELECTRODES, 430 S.S 

U I h  

I 

Figure 4. Pool-boiling apparatus 

V. DATA COMPUTATION 

A. Heat Flux A third method used to compute the heat flux consisted 
of calculating the heat added to the liquid, using the bulk- 
temperature rise of the liquid aaoss the ta t  section and 
the 

The electrical Power supplied to the test Section was 
used to compute the heat flux from the test section by the 
equation 

weight flow rate. 

The estimated precision of the value of q determined 
from Eq. (1) was 22%. As a check on the electrical meas- 
urements of the test-section power, the temperature- 
dependent resistance R was used to calculate the heat 
flux, using Eq. (2): 

Resistance R was evaluated at the average wall tempera- 
ture of the tube (Ref. 2, Fig. 16). The maximum deviation 
between the values computed from Eqs. (1) and (2) 
was 5%. 

In general, these results agreed within 5% of those 
obtained from Eq. (1). 

0. Heat Flux at the Upper limit of Nucleate 
Boiling 

Heat flux at the upper limit of nucleate boiling qui was 
calculated from Eq. (1). The values of the current and 
voltage used in the equation to establish 9.1 were those 
measured at the point at which there was a sudden large 
increase in wall temperature which is characteristic of the 
transition to film boiling. In nearly all tests, tube failure 
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occurred simultaneously with this transition. At high bulk 
temperatures and pressures above lo00 psi there were 
some tests in which the power could be shut off before 
tube failure occurred. 

C. liquid-Side Wall Temperature 

The liquid-side wall temperature was calculated from 
the measured outside wall temperature and a theoretical 
temperature difference across the tube wall which was 
obtained by assuming uniform internal power generation 

within the metal wall. The following equation was used 
for the temperature difference across the tube wall: 

Values of AT, reached a maximum of 3 3 5 O F  at the highest 
heat flux measured, which was 14.3 Btu,h2 sec. The ther- 
mal conductivity was evaluated at the arithmetic average 
temperature of the tube wall. A derivation of Eq. (4) is 
given in Ref. 2. 

VI. RESULTS 

A. General 

The results of the heat-transfer study with subcooled 
liquid ammonia are presented in Figs. 5 through 11, with 
emphasis placed upon the values of the heat flux at the 
upper limit of nucleate boiling quz. These figures show 
the effects of pressure, velocity, and liquid bulk tempera- 
ture on qui. Some data in the nonboiling forced-convection 
region were also obtained; the results are shown in Figs. 
5 through 8. The ranges of test conditions include pres- 
sures between 150 and 1820 psia, velocities between 0 
and 156 ft/sec, and liquid bulk temperatures between 23 
and 1 5 8 O F .  

6. Nonboiling Region 

Figure 5 indicates typical trends of heat flux vs tem- 
perature difference between the wall and the liquid. The 
nonboiling region is represented by the lower straight 
line having a slope of 45 deg. In this region heat-transfer 
coefficients h were computed from the equation 

where 9 was evaluated using Eq. (l), Ta was measured, 
and TWi was computed using Eq. (4) and measured values 
of Two. In Fig. 6 comparisons of the experimental values 
of h obtained in this manner in terms of the Nusselt num- 

ber are compared with the following Sieder-Tate corre- 
lation equation (Ref. 3): 

Curves of viscosity, specific gravity, and specific heat 
as functions of temperature are shown in Figs. 12, 13, and 
14. In Fig. 15 the thermal conductivity is shown as a 
function of temperature calculated from the following 
equation (obtained from Ref. 4), which is stated to apply 
for non-metallic liquids: 

(;)*':I I (q 
(7) 

(cP - 0.45)3 + 

0.641 3.31 41.3 k = 0.00266 + 
where S is the specific gravity, M is the molecular weight, 
p is the viscosity in centipoises, and k is the thermal con- 
ductivity in Btu/hr ft O F .  In Ref. 5 a value of 0.29 Btu/hr 
f t  OF is given for the thermal conductivity of liquid ammo- 
nia between 5 to 86OF. This value of k is the same as that 
predicted by Eq. (7) at 46OF. 

Most of the experimental results lie within 20% of Eq. 
(e), which is typical of forced-convection nonboiling heat- 
transfer measurements. The hydraulic entrance length-to- 
diameter ratio upstream of the heated portion of the 
test-section tube was 25 for the 0.250-in.-diameter tubes 

6 
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0. I 
I O  20 40 60 100 200 

Figure 5. Heat flux as a function of temperature 
difference for various pressures with constant 

velocity and bulk temperature 

and 37 for the 0.1875in.diameter tubes. These lengths 
are considered adequate to establish fully developed adia- 
batic flow conditions. Heated length-todiameter ratios 
at the outlets of the tubes were 13.6 for the 0.250-in.- 
diameter tubes and 20.0 for the 0.1875-in.-diameter tubes. 
Based on the results of Ref. 6, these length-to-diameter 
ratios are considered adequate to eliminate thermal 
entrance effects. The wall temperatures and heat-transfer 
coefficients refer to values near the tube outlets. 

C. Nucleate-Boiling Region 

The inception of nucleate boiling can be determined 
from the inside wall temperature. It will be observed that 
the inside wall temperature increases on the nonboiling 
curves of Figs. 5,7, and 8 as heat flux is increased. When 

4000 

I I I I I 1 1 1 1  

REYNOLDS N U M B E R , ( R ~ ) ~  X I O - ~  

Figure 6. Correlation of nonboiling forced-convection 
data with the Sieder-Tate equation 

WALL TEMPERATURE,"F 

Figure 7. Heat flux as a function of wall temperature 
for a velocity of 30 ft/sec and an inlet liquid 

bulk temperature of SOOF 
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WALL TEMPERATURE, O F  

Figure 8. Heat flux as a function of wall temperature 
for a pressure of 500 psia and a bulk 

temperature of 5 5 O F * 5  

the inside wall temperature reaches a value somewhere 
between 0 and 60°F above the saturation temperature of 
the liquid (see Fig. 16), nucleate boiling commences. The 
magnitude of the difference between wall temperature 
and saturation temperature (Ttui - T,,,) at which nucle- 
ate boiling begins is dependent upon the test conditions. 
This temperature difference generally increases slightly 
as velocity is increased and is virtually unaffected by pres- 
sure and bulk temperature. These values of temperature 
difference are in general agreement with those found by 
other investigators (Ref. 7). 

8 

PRESSURE, psi0 

Figure 9. Heat flux at the upper limit of nucleate 
boiling as a function of pressure 

VELOCITY, f t  /sec 

Figure 10. Heat flux at the upper limit of nucleate 
boiling a s  a function of velocity for various 

liquid bulk temperatures at a pressure 
of 500 psia 

Wall temperatures are nearly constant in the nucleate- 
boiling region, varying less than 5O0F between inception 
and the upper limit at given flow conditions. Wall tem- 
peratures can, therefore, be predicted by adding approx- 
imately 2 5 O F  to the saturation temperature. Fluid pressure 
is the only variable that substantially affects wall tem- 
perature under nucleate-boiling conditions because of the 
pressure effect on saturation temperature. Wall tempera- 
tures in the nucleate-boiling region, as well as in the non- 
boiling region, generally do not impose a design limit on 
rocket-engine thrust chambers; consequently, the sug- 
gested approximation for determining wall temperature 
is sufficiently accurate for practical considerations. 
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D. Upper Limit of Nucleate Boiling 

The heat flux at the upper limit of nucleate boiling q.I 
is of primary interest for the design of rocket-engine 
coolant passages because of the sudden large increase in 
wall temperature associated with the transition from 
nucleate boiling to film boiling. It was necessary to deter- 
mine experimentally the relationship of qUl to the vari- 
ables p, V, and T,,, since no general method of predicting 
qut is available. During the tests the transition to film 
boiling under all test conditions, except those at 10oO psia 
and above, resulted in tube failure before the heat flux 
could be reduced. At  these higher pressures, the heat- 
transfer coefficient of the vapor film is sufficient to sup- 
port a heat flux at a wall temperature below failure limits. 
Therefore, the application of electrical power to the test 
section could be terminated before tube failure occurred. 

In Fig. 9, qut is plotted vs pressure for given values 
of bulk temperature and velocity. At the two higher veloc- 
ities shown (80 ft/sec and 30 ft/sec) the maximum value 
of 4.1 was obtained at a pressure of about 900 psia, or 
approximately 5,5% of the critical pressure of 1657 psia. 
At zero velocity the peak value of 4.1 was observed to 
occur at about 500 psia, or approximately 30% of critical 
pressure. Cichelli and Bonilla (Ref. 8) also found the peak 
value of q.2 for several liquids with zero velocity to be 
approximately 30% of the critical pressure of the fluid. 

LIOUID BULK TEMPERATURE,~F 

Figure 11. Heat flux at the upper limit of nucleate 
boiling a s  a function of liquid bulk temperature 

for various velocities at a pressure 
of 500 psia 

Nucleate boiling cannot exist above the critical pressure. 
Therefore, the heat flux measured for the test at 1820 psi 
is not quz but a heat flux at which the wall temperature 
exceeded 7W°F (see Fig. 7). 

The effect of velocity on qUl is shown in Fig. 10, where 
it may be observed that 4.1 increases linearly with veloc- 
ity. The slopes of the curves are found to be dependent 
on liquid bulk temperature. 

Figure 11 shows the effect of liquid bulk temperature 
on values of qut for velocities of 0, 30, and 60 ft/sec at a 
pressure of 500 psi. Values of qUl were found to decrease 
linearly with increasing bulk temperature to virtually a 
common value at the saturation temperature (160OF at 
a pressure of 500 psia). Bulk-temperature effects on 9.1 
are more pronounced at the higher velocities. 

An interpolation equation has been derived for com- 
puting 4.r from the experimental results: 

(8) 
qui = [ 1 - 0.168(%)] [1.85 

+ (0.0083 -I- 7.0 X 10-4V) Atsub] 

The comparison of experimental values of q.1 with those 
obtained from Eq. 8 for the same conditions is shown in 
Fig. 17. Most of the experimental data lie within *20% 
of this equation. It should be emphasized that Eq. 8 was 
established from the best fit of experimental data rather 
than from a fundamental heat-transfer consideration. 

In Table 1 the experimental values of 9.1 are listed for 
each condition of pressure, velocity, and bulk tempera- 
ture tested. 

E. Total Heat Load 

The capability of a coolant to accept the total heat 
load of a given size engine is dependent upon its specific 
heat, the difference between saturation temperature and 
coolant inlet temperature to the thrust chamber, propel- 
lant mixture ratio, and propellant combination. Compari- 
sons of various propellant combinations, including 
NH,-RFNA and NH,-0,, for arbitrary given conditions 
of a 50,000-lb-thrust engine are shown in Ref. 1. The abil- 
ity of the ammonia systems, using ammonia as the cool- 
ant, to accept the total heat load is marginal compared to 
some of the other systems, such as RFNA-UDMH with 
RFNA as the coolant, Corporal fuel-SFNA with Corporal 

9 
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TEMPERATURE, O F  

Figure 12. Viscosity of ammonia as a function of temperature and pressure 
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Figure 13. Specific gravity of ammonia as a 
function of temperature 
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Figure 14. Specific heat of ammonia as a 
function of temperature 
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Velocity 
f t / H C  

32.0 
31.6 
30.0 
30.0 
30.0 
30.0 
29.5 

fuel as the coolant, DETA-SFNA with DETA as the cool- 
ant, and JP-3-N,04 with JP-3 as the coolant. It is of inter- 
est to note, however, that at a temperature of lW0F the 
specific heat of ammonia is 1.17 Btu/lb OF, which is high 

Pressure 
pria 

495 
500 
500 
494 
490 
478 
504 

Figure 15. Thermal conductivity of ammonia 
os a function of temperature 

484 38.0 8.03 
490 58.0 7.01 
484 65.0 6.69 
497 99.0 5.00 
492 101.0 4.90 
502 154.0 4.16 

206 73.0 3.75 
352 59.0 6.90 
496 63.0 8.45 
516 58.0 9.12 
530 66.5 7.23 
775 60.0 9.30 

1005 61.0 9.52 

1215 68.0 8.96 
~ 1020 70.0 8.98 
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Table 1. Values of qrcl 

T r  (outlet) 
OF 

22.5 
27.5 
76.0 

100.5 
101.0 
149.0 
152.0 

~~ 

q* J 

Btu/in? SIX 

5.64 
5.38 
4.76 
3.41 
3.50 
2.29 
2.08 

30.0 
30.0 
30.0 
32.5 
30.0 
31.1 
32.9 
30.0 
25.4 
27.5 

1 70 
170 
300 
240 
794 
954 

1025 
1174 
1555 
1820 

66.0 
62.0 
67.0 
76.5 
80.0 
67.0 
63.0 
77.0 
63.0 
75.0 

2.53 
2.32 
3.88 
4.72 
4.95 
5.50 
5.46 
4.77 
4.50 
4.1 1 

60.0 
63.0 
61.7 
56.0 
60.0 
55.2 

89.0 
81.7 
87.0 
84.0 
84.5 
81.6 
82.7 
80.6 
81.6 

3.0 
3.0 

10.0 
15.2 
42.2 
82.3 
97.2 
98.5 

121.0 
124.0 
127.5 
137.0 
156.0 

494 
504 
499 
486 
51 8 
504 
518 
500 
500 
500 
475 
516 
500 

158.0 
140.0 
75.0 
71.0 
77.0 

108.0 
65.5 

124.5 
53.5 
57.5 
67.5 
58.0 
65.0 

1.73 
2.41 
3.12 
3.52 
5.36 
5.82 
8.29 
3.42 

10.60 
10.21 
12.20 
11.64 
14.30 

Heat flux at which the wall temperature exceeded 700°F. 

compared to 0.42 Btu/lb O F  for RFNA, 0.50 Btu/lb O F  
for Corporal fuel, 0.435 for JP-3, 0.393 for N,O,, and 
0.744 for N,H,. The comparatively low saturation tem- 
perature of NH, imposes a restriction on its cooling capa- 
bility and offsets the high specific heat. 

11 
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/ 

{I - 0. I68 [ (P - 530)/530]*}[1.85 + (O.O083+ 7.0 X 10-4V)A lSub] 

Figure 17. Comparison of experimental values 
of qUl with Eq. ( 8 )  
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Vll. CONCLUSIONS 

The results from this experimental heat-transfer inves- 
tigation showed that the convective heat-transfer coeffi- 
cient of ammonia in the turbulent-flow nonboiling region 
could be predicted within +20!% by the Sieder-Tate 
equation when the physical properties were evaluated at 
the liquid-bulk temperature and a correction Was made 
for the viscosity distribution across the boundary layer. 

The wall temperature at the inception of nucleate boil- 
ing is equal to the saturation temperature plus about 
%OF. Once nucleate boiling was established, the wall 
temperature remained nearly constant with increasing 
heat flux until qut was reached. Values of qUz were repro- 
ducible and showed trends as a function of pressure, 
velocity, and liquid bulk temperature typical of other 
liquids. At a given pressure, the value of 9.1 increased 
with increasing velocity and decreased with increasing 
bulk temperature to an apparent common value at the 

saturation temperature. As a function of pressure, values 
of qUl were a maximum at about 55% of the critical pres- 
sure under flow conditions; whereas, at zero velocity, qUl 
reached a maximum at about 30% of the critical pressure. 

The capability of ammonia as a regenerative coolant 
for rocket engines is dependent upon its ability to accept 
local heat fluxes (which is established by 4.1) and its 
ability to accept total heat loads of the entire thrust cham- 
ber. For comparative purposes, the values of qnl of vari- 
ous propellants are given at a pressure of 300 psia, a 
velocity of 30 ft/sec, and a liquid bulk temperature of 
1 0 0 O F ;  they are 2.5 for NH,, 4.5 for JP3, 4.6 for Nz04, 
6.8 for RFNA, 8.1 for Corporal fuel, and 12.4 for N,H4. 
Consequently, the local cooling capability of ammonia at 
these conditions is comparatively low. The total heat-load 
cooling capability of NH, is limited by the low saturation 
temperature, even though it has a high specific heat value. 

NOMENCLATURE 

A area, in.' 
c,, specific heat at constant pressure, Btu/lb O F  

D diameter of tube, in. 

E voltage, v 
h heat-transfer coefficient, Btu/sec in.' O F  

I current, amp 
R thermal conductivity, Btu/sec in. O F ,  

L length of test section, in. 
M molecular weight 

except as noted 

Nu Nusselt number = R h D, (dimensionless) 

Pr Prandtl number = PC (dimensionless) 
b 

q heat flux, Btu/in.2 sec 
r radius,in. 

R resistance, Q 

pD.V 
P 

Re Reynolds number = (dimensionless) 

S specific gravity 
T temperature, O F  

t wall thickness, in. 
ZJ velocity, ft/sec 

i weight flow rate, lb/sec 
A T  temperature difference, O F  

p viscosity, lb/in. sec, except as noted 

p density, lb/in.3 

13 
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NOMENCLATURE (Cont’dl 

Subscripts saturation condition 

B liquid bulk condition 

i inner 

outer 

s l l b  subcooling (i.e., saturation condition minus 
bulk condition) 

u z  upper limit of nucleate boiling 

8 surface normal to heat flow wall condition 

REFERENCES 

1. Bartz, D. R., Factors Which Influence the Suitability of Liquid Propellants as Rocket 
Mofor Regenerative Coolants, Memo No. 20-1 39, Jet Propulsion Laboratory, Pasa- 
dena, December 28, 1956. 

2. Massier, P. F., A Forced Convection and Nucleate Boiling Heat-Transfer Test Appa- 
ratus, Technical Report No. 32-47, Jet Propulsion Laboratory, Pasadena, February 
3, 1961. 

3. McAdams, W. H., Heat Transmission, McGraw Hill Book Co., Chapter VII, p. 168, 
1942. 

4. Perry, John H., Chemical Engineers’ Handbook, Second Edition, 1941, p. 962. 

5. Kardos, A., “Die Warmenleitfahigkeit verschiedener Flussigkeiten,” Zeitschrift fur 
die gesclmte Kalte-lndustrie, Vol. 41, No. 2 (1 934). 

6. Hartnett, J. P., “Experimental Determination of the Thermal-Entrance Length for the 
Flow of Water and of Oil in Circular Pipes,” ASME Transactions, Vol. 77, p. 121 1, 
November 1955. 

7. Reinhardt, T. F., Potter, R. L., and Moore, F. M., “Heat Transfer Properties of Anhy- 
drous Ammonia,” OASD Research and Development, p. 85, Liquid Propellants 
Symposium, March 27-28, 1957. 

8. Cichelli, M. T., and Bonilla, C. F., Transactions of the American Institute of Chemical 
Engineers, Vol. 41, p. 755, 1945. 

9. Carmichael, L. T., and Sage, B. H., “Viscosity of Liquid Ammonia at High Pressure,” 
Industrial and Engineering Chemistry, VOI. 44, Pt. II, pp. 2728-32, 1952. 

10. Tables of Thermodynamic Properties of Ammonia, National Bureau of Standards 
Circular No. 142, April 19, 1923. 

14 

- 


